

Diagnostic and analytical techniques for advanced materials and nanostructures

Michele Muccini

Istitute for Nanostructure Materials CNR Research Area Roma 1, Montelibretti

michele.muccini@cnr.it

Outline

Glimpse on CNR Research Area - Roma 1 research infrastructure

- Ex situ characterization & diagnostic techniques
 - SEM-EDS
 - Auger & X-ray Photoelectron Spectroscopy
 - Combined use of SEM, EDS, XPS
 - Raman and IR Spectroscopy
 - > SPM
 - Laser Scanning Spectroscopy
- Potential and perspectives

Area della Ric Montelibretti	cerca di Roma I Sala conferenze Contatti * Dove siamo * Gallery	
Follow: f 🛩 🛅	INSTITUTES	MORE
THEMATIC AREAS Environment Biology, Agriculture and Food Sciences Cultural Heritage Functional Materials Health and Wellbeing	 The following Institutes are present in the AdR RM1 area: INSTITUTE OF AGRO-ENVIRONMENTAL AND FOREST BIOLOGY (IBAF) INSTITUTE OF AGRICULTURAL BIOLOGY AND BIOTECHNOLOGY (IBBA) INSTITUTE OF CELL BIOLOGY AND NEUROBIOLOGY (IBCN) INSTITUTE FOR THE CONSERVATION AND VALORIZATION OF CULTURAL HERITAGE (ICVBC) INSTITUTE OF CRYSTALLOGRAPHY (IC) INSTITUTE OF ENVIRONMENTAL GEOLOGY AND GEOENGINEERING (IGAG) INSTITUTE OF ATMOSPHERIC POLLUTION RESEARCH (IIA) INSTITUTE OF CHEMICAL METHODOLOGIES (IMC) INSTITUTE OF WATER RESEARCH INSTITUTE (IRSA) INSTITUTE FOR THE STUDY ON ANCIENT MEDITERRANEAN (ISMA) INSTITUTE OF STRUCTURE OF MATTER (ISM) 	Q To search type and hit enter HIGHLIGHTS RESTYLING DEL SITO DELL'AREA DI RICERCA DI ROMA 1 MONTELIBRETTI 8 Settembre 2017 RESTYLING DEL SITO DELL'AREA DI RICERCA DI ROMA 1 MONTELIBRETTI Grazie alle risorse interne all'Area di Ricerca []
Health and Wellbeing	 INSTITUTE OF NANOSTRUCTURED MATERIALS (ISMN) INSTITUTE FOR TECHNOLOGIES APPLIED TO CULTURAL HERITAGE (ITABC) 	Leggi tutte le News

Area della Ricerca di Roma 1

www.mlib.cnr.it

700 employees 37,000 sqm technological infrastructure's area.

Scanning Electron Microscopy (SEM)

Due to its wide versatility, SEM is largely used to investigate the micro and nanomorphological-structural-chemical features and behaviour of a wide panorama of materials with a large industrial use or high technological interest.

Morphological investigation of organic nanostructured materials: lipid nanoparticles for drug delivery (Bondì)

Process evaluation of microelectronic components production

200nm

Mag = 100.00 K X

Optimisation of the ITO deposition parameters

Structural and morphological study of thin films multi-layered structures for electronic devices

Investigation of the deposition processes of TiN protective films

e Competitività 2007-2013

Production and analysis of epoxy resins for the packaging of avionic system components

Mag = 80.00 K X EHT = 8.00 kV Signal A = InLens WD = 5.8 mmCHT-90-L-2%

The morphological investigation has guided the synthesis and the dispersion procedures of nanostructures improving:

- the electrical conductivity of 1100 %;
- the thermal conductivity of 470 %.

SEM-EDS morphological and chemical analysis

Failure analysis of jet engine turbine blades Degradation mechanisms identified

Auger & X-ray Photoelectron Spectroscopy

Coatings of turbine blades and combustion chamber in jet engines

XPS spectra of TBCs produced by adopting different deposition parameters (energy region Al 2p,Si 2p,Fe 3s,Ce 4d)

Combined XPS and SEM analysis allows:

- to optimise the production processes;
- to evaluate the durability and reliability
- to prevent catastrophic failure

TBC deposited on a jet engine turbine blade (25.5 wt% CeO_2 -2.5 Y_2O_3 - ZrO_2) after a thermal cycling test. The coating fracture has been caused by impurities (Si, Al, Na) segregation phenomena inducing also a columnar growth.

μ-Raman spectroscopy

Renishaw 2000 μ -Raman with a Peltier cooled CCD camera in conjunction with a Leica optical microscope and laser excitation

Raman spectroscopy is a scattering technique based on the inelastic scattering of incident radiation through its interaction with vibrating molecules (Raman effect).

carbon nanotubes

G/D and **G⁻/G⁺** ratios are indicators of sample quality and conductivity of the sample

Radial Breathing Mode (RBM) is directly related to the diameter of nanotubes

Evaluation of internal stress of a DLC film on a Si substrate: $\sigma = 2G\left(\frac{1+\nu}{1-\nu}\right) \cdot \left(\frac{\Delta\omega}{\omega_0}\right)$

Eu-TiO2 NCs functionalized cotton

Molecular self assembly

ATR-FTIR spectroscopy for Cultural Heritage

Investigation of the composition of degradation products on copper-based works of art.

Consiglio Nazionale delle Ricerche

Analysis of patina composition:

- Identification of degradation products on copper-based alloys, as copper hydroxyclhorides and hydroxysulphates
- Distinguish degradation products \checkmark polymorphs with different chemical reactivity (as clinoatacamite and atacamite) Copper hydroxyclhoride degradation products

G. Di Carlo et al., Applied Surface Science 421 (2017) 120–127-1 cm

Copper hydroxysulphate degradation products

1500

Time (ps)

Time-resolved micro-spectroscopy laboratory

- Spatially resolved (<300 nm) Energy resolved
- Time resolved (2 ps)

Temperature 450 - 4,2 K

Correlation morphology-structure-function in composite systemsAFMCLSMLocalized PL spectrum

Nature Materials, 4 (2005) 81

In summary

- The combination of different analysis techniques is essential for the development of ALM Technology
- □ SEM, XPS, XRD, SPM, RAMAN, FTIR, DTA-TG-DSC, LASER SPECTROSCOPY and OM, allows the thorough
- investigation of degradation phenomena (failure analysis) of structures and components
- optimization of production processes
- tailoring of the materials final properties

Aim at in-situ process monitoring and metrology

Acknowledgments

FTIR Spectrocopy Lab Di Carlo Giuliani Ingo	SPM Lab Leo Cerri Padeletti
ank you!	Brucale Albonetti
	FTIR Spectrocopy Lab Di Carlo Giuliani Ingo