

Accelerating Products to Marketing with Additive Manufacturing Digital Solution overview for Nanoinnovation 2017, Rome, Italy

Davide Malacalza

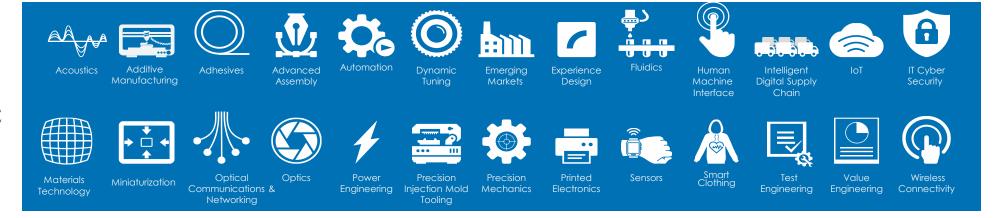




## How Jabil Empowers You Today

OUR MARKETS




OUR E2E OFFERINGS

innovate design plan make deliver manage

OUR DIGITAL ENGINE SPEED, AGILITY FACTOR

The Digital Thread: Jabil's Intelligent Digital Platform™
The data and connectivity thread that makes Jabil fast and efficient across the entire product lifecycle

INNOVATION FUEL: ENGINEERING EXCELLENCE



OUR DIFFERENCE

Talent
Continual education & investment in people

#### Portfolio

Unmatched collection of technology & engineering capabilities across 14 sectors

#### Digital

Our digital platform, connectivity & data-based approach

#### Values

Award-winning social & environmental responsibility programs & great people

#### Business model

Unique SECURE WORK-CELL MODEL PROTECTS REPUTATION, BRAND & IP



180k EMPLOYEES 102 PLANTS GLOBALLY 27, 000 SUPPLIERS

26
PLANTS IN USA

1,600 CAPABILITIES

330 TOP BRANDS 18b/1.2b
REVENUE/OCF

## Jabil Italy

Location: South Italy - Marcianise Industrial Area





- Employees = 850
- Campus area: 90,000 smq
- Production area: 18,000 smq
- 30 Km from Naples Airport
- 33 Km from Naples Harbour
- Close to A1 main Italy highway

JABIL

# 3D Printing Value Proposition

### DESIGN FREEDOM AND ELIMINATION OF TOOLING ENABLES DIGITAL

Complexity Personalization for free Customization Consolidation of components NO SUPPLY CHAIN CHANGE Distributed Manufacturing Redefined Local for Local **NPI Process** MRO and Spares 3D printing is the process of producing parts through a layer-by-layer additive process without the need for part specific tooling, or the waste associated with traditional processes.

As a fully digital manufacturing process, 3D printing is a fixtureless production process that allows parts to be instantly moved from location to location as digital files, creating a more agile, responsive manufacturing operation.

Supply Chain Disruption

Graphic: Deloitte University Press



**Product Disruption** 

# The \$12 Trillion Opportunity

3D PRINTING TRANSITION FROM PROTOTYPING TO PRODUCTION



# Additive Manufacturing Market Gaps MANUFACTURING IS MORE THAN PROTOTYPING AT SCALE



- More materials
- Digital materials
- Microstructure
- (clear processing
- parameters)
- Standards

### Software

- · Ease of use
- Printer drivers
- Compatibility with
- different machines
- (standards)
- Process control

### Hardware

- Speed
- Cost
- Build volume
- Precision
- Surface quality
- · Thermal contraction
- Repeatability
- Anisotropy
- Energy efficiency

#### Workflow

#### • Broken workflow

- Design reliability
- Manual preparation
- for printing
- Manual post processing
- Consistency
- between machines
- Energy efficiency

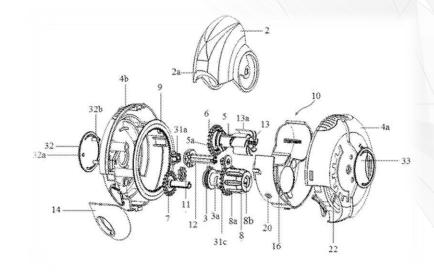
#### Legal

- Safety after user file
- changes
- Design piracy
- Copyright
- Safety of printers



JABIL




# Accelerating Production Parts

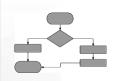
#### Supply Chain and Use-Case Review

- Review Areas of impact
- Assess material and technology needs
- Define integration pathway










#### **Differentiated Production Parts**

- Enhanced performance
- Complex part
- Cannot make traditionally

#### **Manufacturing Process Design**

- Process development
- Material development
- Machine parameter development

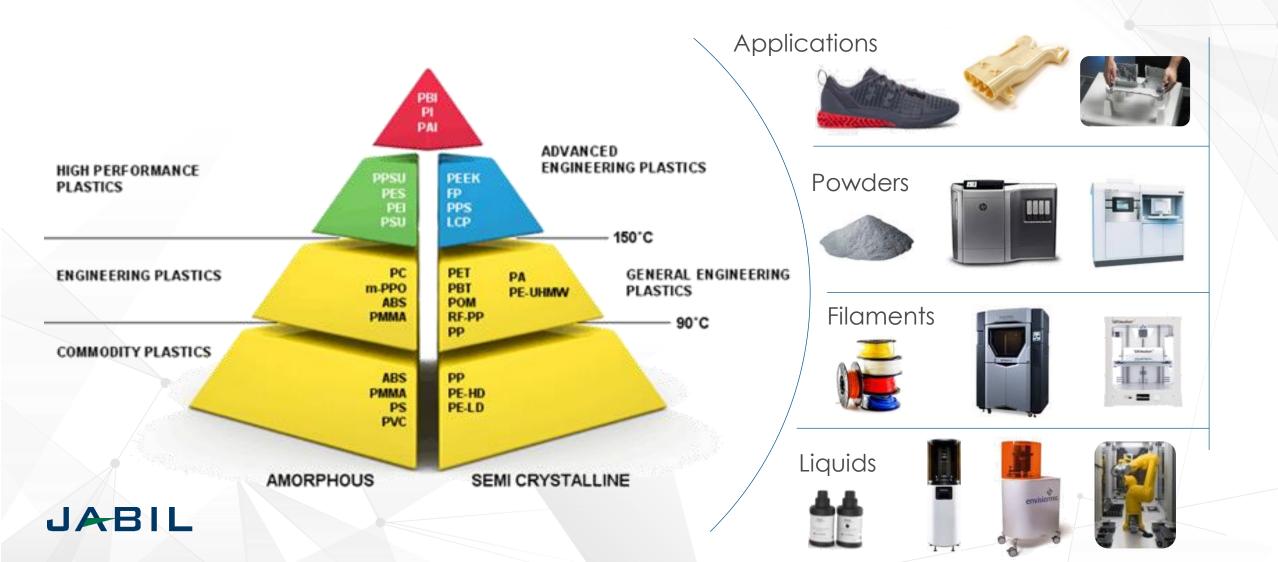




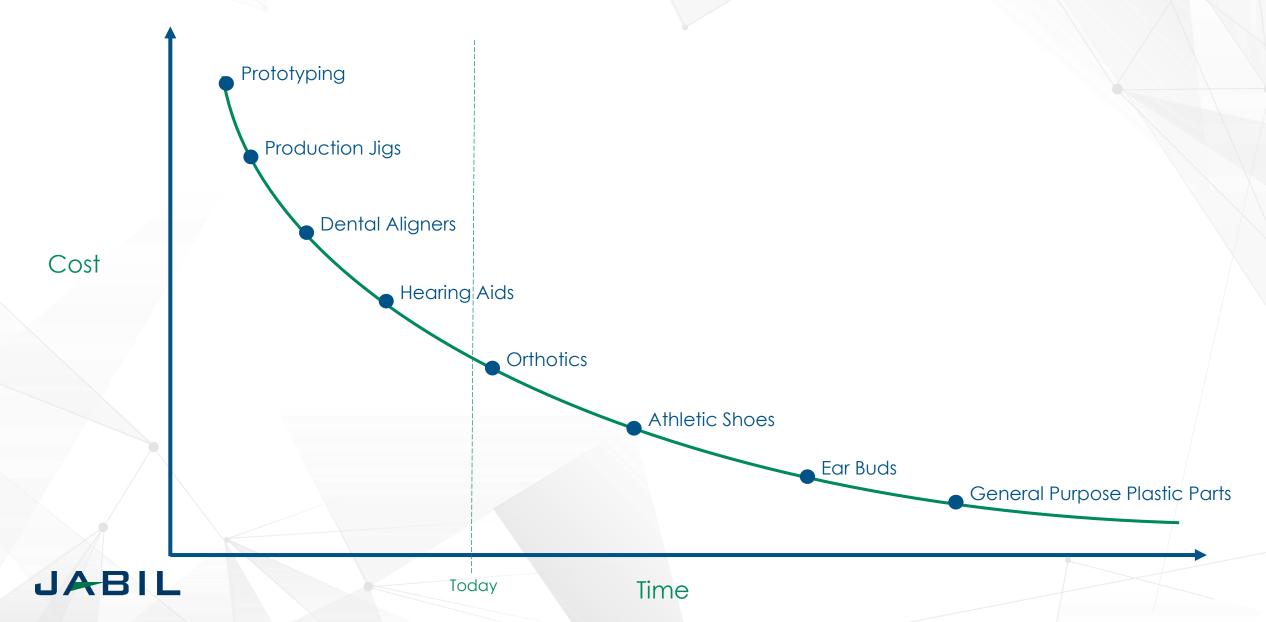




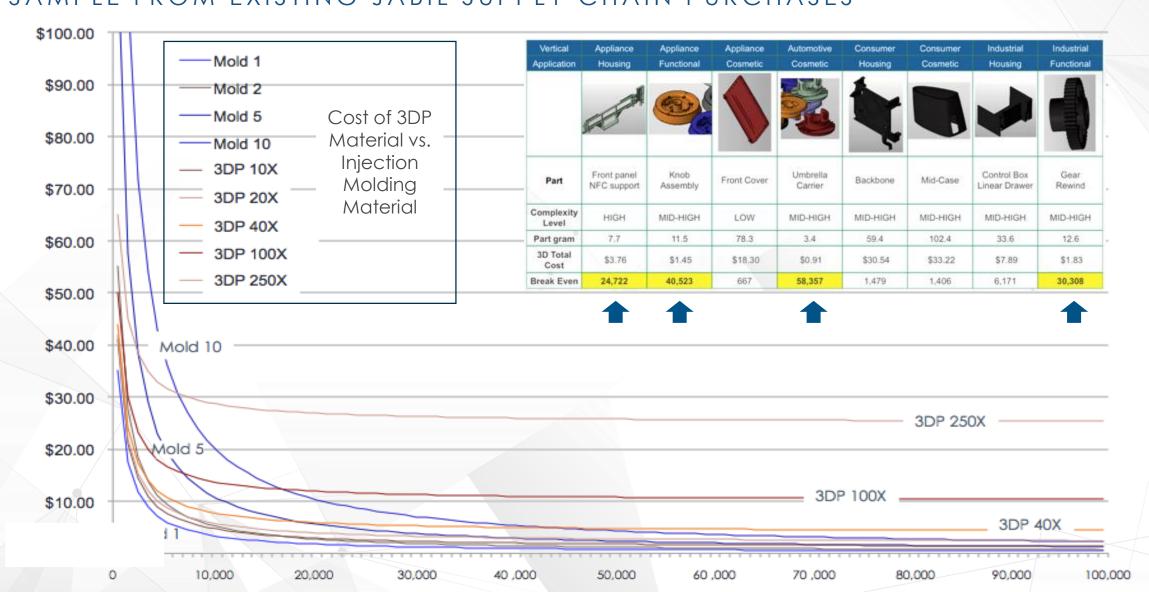
#### Manufacturing Implementation


- System Integration
- Hardware & Software delivery
- Service support




## Manufacturing Technology Platforms




# Materials are key to Additive Manufacturing MATERIAL PROPERTIES AND COSTS OPEN UP APPLICATIONS



# Cost Curve enables Applications



# Cost Curves: 3D Printing vs. Injection Molding SAMPLE FROM EXISTING JABIL SUPPLY CHAIN PURCHASES



## Functional Part Production







## MULTI JET FUSION - PRODUCTION (MJF VS SLS)

Mobile Camera Mount

Compression design fit

Dimensions: 25mm x 25mm x 28mm

#### **Printed in PA12**

Print time: 7 hours, 2000 parts per print

Part volume: 7,880 cm<sup>3</sup>

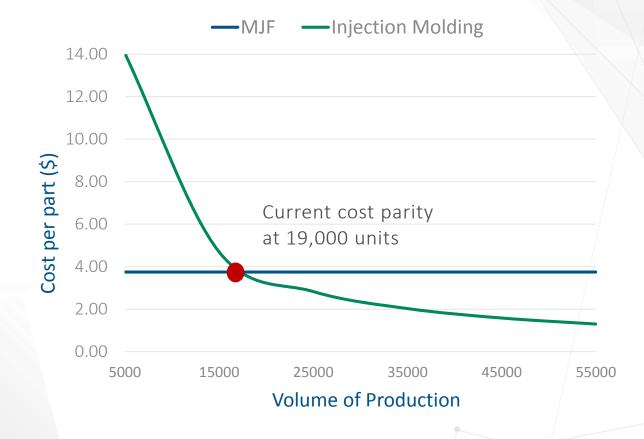
Parts printed: 1300

| Technology     | MJF    | SLS     |
|----------------|--------|---------|
| Part material  | Nylon  | Nylon   |
| Mold material  | N/A    | N/A     |
| Part lead time | 1 day  | 10 days |
| Mold cost      | \$0    | \$0     |
| Part cost      | \$3.75 | \$7.80  |










## MULTI JET FUSION - PRODUCTION (MJF VS PRODUCTION MOLDING)

| Technology     | MJF    | Production<br>Injection mold |
|----------------|--------|------------------------------|
| Part material  | Nylon  | Nylon                        |
| Tool material  | N/A    | Steel                        |
| Part lead time | 1 day  | 16 weeks                     |
| Tool cost      | \$0    | \$70,000                     |
| Part cost      | \$3.75 | \$0.18                       |



### Cost per part; MJF vs Injection Molding





# Solutions MULTI JET FUSION - PRODUCTION (MJF VS PRODUCTION MOLDING)

| Technology     | MJF     | Production<br>IM | IM     | Breakeven |
|----------------|---------|------------------|--------|-----------|
| Part material  | PA12    | Nylon            |        |           |
| Tool material  | N/A     | Steel            |        |           |
| Part lead time | 1 day   | 16 weeks         |        |           |
| Battery Cover  | \$0.42  | \$10,000         | \$0.02 | 25,000    |
| Sun Visor      | \$2.64  | \$20,000         | \$0.50 | 9,400     |
| Housing        | \$43.03 | \$85,000         | \$3.00 | 2,125     |
|                |         |                  |        |           |

Universal Controller – 5-Piece Assembly Dimensions: 250mm x 200mm x 50mm





## Solutions

## CARBON - PRODUCTION (CLIP VS SUBTRACTIVE)



#### **Machined from Aluminum**

Part mass: 302.7 g

Machining time: 35 min

Cost

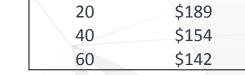
| 2 |  |
|---|--|

**Printed in RPU 70** 

Part mass: 77.4 g

• Print time: 3 hr

Parts per print: 3


Post processing: 3 min

| Order qty | Cost |
|-----------|------|
| 20        | \$50 |
| 40        | \$50 |
| 60        | \$50 |



**Printed in RPU 70** 

Optimized in RPU 70 with SolidThinking Inspire for 3X safety factor with same mass as conventional design



**Order qty** 



## Solutions



## CARBON - PRODUCTION (CLIP VS PROTOTYPE MOLDING)

Secures floor mat down to carpet

Small hooks (similar to velcro)

Dimensions: 6mm x 70mm x 70mm

#### **Printed in RPU 70**

Print time: 80 min, 22 parts per print

Part volume: 10mL

Parts printed: 5

| Technology     | CLIP   | Prototype<br>injection mold |
|----------------|--------|-----------------------------|
| Part material  | RPU 70 | Nylon 6,6                   |
| Mold material  | N/A    | Aluminum                    |
| Part lead time | 1 day  | 5 days                      |
| Mold cost      | \$0    | \$4,000                     |
| Part cost      | \$4.50 | \$6.00                      |





## Solutions



## CARBON - PRODUCTION (CLIP VS PRODUCTION MOLDING)

| Technology     | CLIP   | Production<br>Injection mold |
|----------------|--------|------------------------------|
| Part material  | RPU    | Nylon 6.6                    |
| Tool material  | N/A    | Steel                        |
| Part lead time | 1 day  | 12 weeks                     |
| Tool cost      | \$0    | \$50,000                     |
| Part cost      | \$4.50 | \$0.12                       |

## Cost per part (\$) 4.00 2.00 0.00 5000 15000 25000 35000 **Volume of Production**

Current cost parity

at 11,000 units

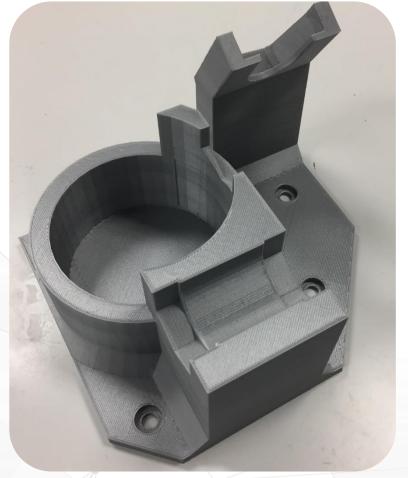
—CLIP

10.00

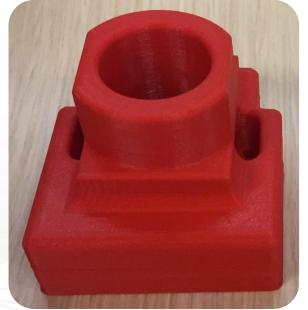
8.00

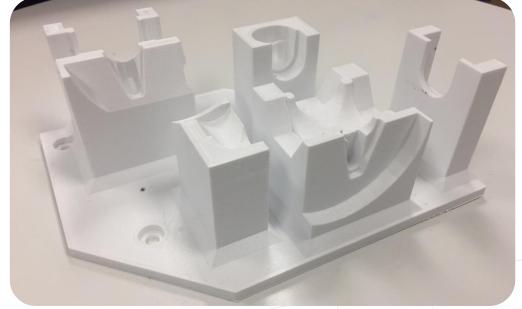
6.00

Cost per part: CLIP vs Injection Molding


—injection molding

45000


55000




## Fixtures and Tooling





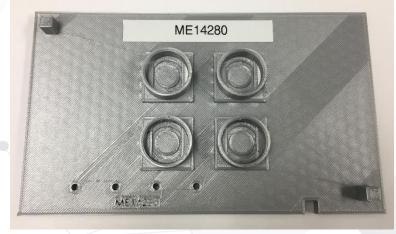




JABIL

# Industrial Print Racks reliable capacity for fixtures and tooling




- 1. Industrialized printers and drawers to improve uptime and speed
- 2. Individual, closed environmental printing chambers with ventilation
- 3. Compliance with industrial safety standards
- 4. Accessible and easy serviceability
- 5. Fully networked for remote visibility, access and administration
- 6. Integrated print server and collaboration software



Tooling and Fixtures to Support Production - Qty

60st to Print vs Buy





| Solution          | FFF Print<br>Racks | Machine Shop |  |
|-------------------|--------------------|--------------|--|
| Part material     | ESD-PETG           | Aluminum     |  |
| Design Time       | 100 hours          | 100 hours    |  |
| 2D Print          | 0 hours            | 200 hours    |  |
| Review & Approval | 10 hours           | 10 hours     |  |
| Part lead time    | 4 days             | 18 days      |  |
| Part cost*        | \$35               | \$1,000      |  |
| Total (qty 60)    | \$2,100            | \$60,000     |  |

<sup>\*</sup>Part cost does not include design time



# Fixtures and Tooling Acceleration - Case Study Examples

| Customer<br>Projects | Cost and<br>Lead Time                        | 3 <sup>rd</sup> Party<br>CNC | 3 <sup>rd</sup> Party<br>3D Printing | In-House<br>3D Printing |  |
|----------------------|----------------------------------------------|------------------------------|--------------------------------------|-------------------------|--|
|                      | Cost                                         | \$4,000                      | \$1,600                              | \$400                   |  |
|                      | Lead Time                                    | 4-6 weeks                    | 1-2 weeks                            | 1-day                   |  |
| -                    | Tooling for Phone Testing Automation Project |                              |                                      |                         |  |
|                      | Cost                                         | \$27,000 est.                | n/a                                  | \$1,215                 |  |
|                      | Lead Time                                    | 2-4 weeks                    | n/a                                  | 2.5 days                |  |
|                      | Tooling for Footwear Production Automation   |                              |                                      |                         |  |
|                      | Cost                                         | \$10 (Qty 20)                | n/a                                  | \$4.10                  |  |
|                      | Lead Time                                    | 1-week                       | n/a                                  | 70 minutes              |  |
|                      | Wave Solder Component Covers                 |                              |                                      |                         |  |



## Summary

- Additive Manufacturing is moving into production applications
- The solutions require an end-to-end approach that focuses on the total cost, quality and repeatability
- Breakeven points in functional production parts have reached 10,000's of units without design optimization - substantially higher with design optimization
- Breakeven points, compared to subtractive processes, in tooling and fixtures are also compelling
- Addl benefits time-to-market & inv reduction





