

New materials for additive manufacturing -The automotive perspective

Smart Manufacturing in industry 4.0: where we stand?

September 28

Vito Lambertini

GROUP MATERIALS LABS - Polymers & Glass

Transportation sector materials evolution

Innovation drivers and AM materials opportunities in automotive

CRF activities and AM polymeric materials development strategies

- Materials in use substitution
- Materials in use substitution with more performing materials
- Materials with functionalized fillers

Transportation sector materials evolution

Innovation drivers and AM materials opportunities in automotive

CRF activities and AM polymeric materials development strategies

- Materials in use substitution
- Materials in use substitution with more performing materials
- Materials with functionalized fillers

Transportation sector

Very different scenarios...but a global market

FCA Group (EMEA, NAFTA, LATAM and APAC)

The car evolution

Today the car is **assembled with 15.000 parts**, extremely reliable and optimized in terms of safety and environmental impact, **with the lower cost per kilogram** respect to other high technological level consumer goods.

Materials breakdown evolution

Weight %

General materials properties

Transportation sector materials evolution

Innovation drivers and AM materials opportunities in automotive

CRF activities and AM polymeric materials development strategies

- Materials in use substitution
- Materials in use substitution with more performing materials
- Materials with functionalized fillers

Drivers for Innovations

CO₂ problem / Global warming

Each exceeding g CO₂/km will **cost 95** \in to the OEM

Individual customer demands

New style effects and personalization for high **perceived quality**

Environmental friendly materials and reclying improvements

AM boost in Automotive Sector

Transportation sector materials evolution

Innovation drivers and AM materials opportunities in automotive

CRF activities and AM polymeric materials development strategies

- Materials in use substitution
- Materials in use substitution with more performing materials
- Materials with functionalized fillers

Polymers developments

Future Trend

NOW

AM Polymers development strategies

Nan

🗖 Rome, 26–29 September

2017 Innovation

3 Development of functionalized fillers for specific requirements and multifunctionality

Fibers and mineral fillers

Transportation sector materials evolution and innovation drivers

AM materials opportunities in automotive

CRF activities and AM polymeric materials development strategies

- Materials in use substitution
- Materials in use substitution with more performing materials
- Materials with functionalized fillers

Strategy 1 – Develpment of same materials in use

Issues to be managed by robust design: porosity

Injection moulding of AM material (ABS)

FDM deposition (ABS)

Strategy 1 – Develpment of same materials in use

Issues to be managed by robust design: mechanical properties vs directions

- Transportation sector materials evolution and innovation drivers
- AM materials opportunities in automotive
- **CRF activities** and AM polymeric materials development strategies
 - Materials in use substitution
 - Materials in use substitution with more performing materials
 - Materials with functionalized fillers

Strategy 2 – Use of more perfoming materials

Material: ULTEM FDM techcnology

Stress (MPa)

Transportation sector materials evolution and innovation drivers

AM materials opportunities in automotive

CRF activities and AM polymeric materials development strategies

- Materials in use substitution
- Materials in use substitution with more performing materials
- Materials with functionalized fillers

Improve thermal properties for current applications

PA6+ZD Layered (sheet-like) silicate (thickness 1nm, diameter 50-500nm) Reduced percentage of charge (2-10%)

- 1. Increase of thermal and mechanical properties
- 2. Better dimensional stability
- 3. Better rheological properties
- 4. Excellent surface aesthetic aspect
- 5. Better barrier properties
- 6. Reduction of weight

ENGINE COVER Maserati

Strategy 3 – Multifunctional fillers

Strategy 3 – Multifunctional fillers

Smart polymeric materials for new functionalities

Strategy 3 – Multifunctional fillers

- Transportation sector materials evolution and innovation drivers
- AM materials opportunities in automotive
- **CRF activities** and AM polymeric materials development strategies
 - Materials in use substitution
 - Materials in use substitution with more performing materials
 - Materials with functionalized fillers

- Different classes of metallic and polymeric materials with several variations are today used in our cars and AM technologies must find proper way to be applied.
- □ AM strenghts are represented by:
 - Design flexibility (any shape)
 - Increased range of materials with promising properties; different strategies can be followed: substitution 1:1 or use of more performing materials
 - Compatible with developments of multifunctional fillers to same and/or improved properties
- □ AM needs from materials perspectives:
 - Set up of robust methodologies to fully evaluate SoA materials
 - Proper re-design of components to pass all standards managing issues related to lower mechanical performances respect to injected parts and strong influence of direction deposition
 - Process parameters optimization
- Establishment of a stronger value chain working with materials providers and processes developers as today with well established industrial processes

