Micron: le Memorie del Futuro

Roberto Bez

Fellow - PCM PI Director

Process R&D

Agrate Brianza (MB)

Italy

©2011 Micron Technology, Inc. All rights reserved. Products are warranted only to meet Micron's production data sheet specifications. Information, products, and/or specifications are subject to change without notice. All information is provided on an "AS IS" basis without warranties of any kind. Dates are estimates only. Drawings are not to scale. Micron and the Micron logo are trademarks of Micron Technology, Inc. All other trademarks are the property of their respective owners.

Micron at a Glance

Micron is one of the world's leading providers of advanced semiconductor memory solutions

Founded: October 1978, Boise, ID

FY2010 Net Sales to Date (FQ1-2010, FQ2-2010, FQ3-2010): \$5.9 billion

NASDAQ Symbol: MU

Employees: ~23,000 worldwide

Products: DRAM, Flash memory, SSDs, CMOS image sensors and memory modules in multiple technologies, generations, configurations, and packages.

Markets We Serve: Micron's products are designed to meet the diverse needs of computing, networking, server, consumer, mobile, automotive, and industrial applications.

Patents: 17,230

Process R&D Global Presence

Broadest Product Portfolio

88888888

NOR

- Complete parallel & serial portfolio (512kB-2Gb+)
- 1.8 & 3V solutions
- Comprehensive package portfolio
- Automotive Grade Solutions
- Evolution path to Phase Change Memory

DRAM

- Full portfolio from legacy to leading-edge
- SDR, DDR 1/2/3, densities up to 4GB
- DDR3 offerings down to 1.35V and up to DDR3-1600
- Automotive Grade Solutions

Digital Media Group Products

Semiconductor Memory in Everyday Life

Memory Technology Nodes Over Time

Source: Gartner

NAND Scaling Running Out of Electrons

Micron

NAND Replacement Strategy!

- Just need to figure out when NAND hits the wall and be standing on tracks with a better technology
- Technology needs to be competitive in most metrics
- Scale vertically to continue cost reduction

Emerging Memories Near-term And Long-term Alternatives

Micron

Phase Change Memory (PCM)

Chalcogenide Materials

	13 IIIA	14 IVA	15 VA	16 VIA	17 VIA	HELIUM
	5 10.811	6 12.011	7 14.007	8 15.999	9 18.998	10 20.180
	B	C	N	0	F	Ne
	BORON	CARBON	NITROGEN	OXYORN	FLUORINE	NEON
Ì	13 26.982	14 28.086	15 30.974	16 32.06	17 35.453	18 39.948
	Al	Si	Р	S	Cl	Ar
IIB	ALLMINUM	SLICON	PHOSPHORUS	SULPHUR	CHLORINE.	ARGON
409	31 89.723	32 72.64	33 74.922	34 78.96	15 79.904	36 83.798
1	Ga	Ge	As	Se	Br	Kr
2.44	GALUUM	GERMANUM	ARIENIC	SELENIUM	BROMINE	KRYPTON
2.41	49.116.82	20 110.71	51 321/0	54 127.00	55 126.90	54 131.29
1	In	Sn	Sb	Te	1	Xe
UM	INDILM	TIN	ANTIMONY	TELURINA	NODINE	XENON
1.59	81 204.38	82 207.2	83 208.98	84 209)	85 (210)	86 (2.22)
3	TI	Pb	Bi	Po	At	Rn
RY	THALLUUM	LEAD	RISMUTH	POLO	ASTATINE	RADON

Chalcogenic Elements

 Chalcogenide materials are alloys with an element of the VI group of the periodic table, usually combined with IV and V group elements (As₂S₃, As₂Te₃, SnSb₂Te₄, GeTe, Sb₂Te₃, Ge₂Sb₂Te₅...)

Phase Transition

• Certain alloys containing one/more group VI elements (chalcogenide) exhibit reversible transition between the disordered (amorphous) and ordered (crystalline) atomic structure

• Phase transition, induced by temperature, is a very fast mechanism (tens-hundreds of ns)

Phase Change Memory Concept

Amorphous Crystalline Storing mechanism amorphous / poly-crystal phases of a chalcogenide alloy, usually $Ge_2Sb_2Te_5$ (GST) **High resistivity** Low resistivity Reading mechanism resistance change of the GST amorphous \rightarrow high resistance (~ 10 Ω *cm) \rightarrow reset state crystalline \rightarrow low resistance (~ 10m Ω^* cm) \rightarrow set state **Temperature** Writing mechanism Reset (amorphization) self-heating due to current flow (Joule effect) Set (crystallization) Π melting temperature ($T_m \sim 630C$, for $t_{RESET} \sim 10-100$ ns) crystallization temperature ($T_x \sim 400C$, for $t_{SFT} \sim 100-1000$ ns)

Micron

Time

Phase Change Memory Key Attributes

- Non Volatility
- Flexibility
 - No Erase, Bit alterable, Continuous Writing
- Lower power consumption than RAM
- Fast Writes
- Read bandwidth and writing throughput
- eXecution in Place
- Extended endurance

Attributes	РСМ	EEPROM	NOR	NAND	DRAM
Non-Volatile	Yes	Yes	Yes	Yes	No
Scaling	sub-2x nm	n.a.	3x nm	2x nm	3x nm
Granularity	Small/Byte	Small/Byte	Large	Large	Small/Byte
Erase	No	No	Yes	Yes	No
Software	Easy	Easy	Moderate	Hard	Easy
Power	~Flash	~Flash	~Flash	~Flash	High
Write Bandwidth	1- 15+	13-30	0.5-2	10+	100+
	MB/s	KB/s	MB/s	MB/s	MB/s
Read Latency	50 - 100 ns	200-200 ns	70-100 ns	15 - 50 us	20 - 80 ns
Endurance	10 ⁶⁺	10 ⁵ -10 ⁶	10 ⁵	10 ⁴⁻⁵	Unlimited

Le PCM forniscono un nuovo set di caratteristiche che combinano componenti di NVM con DRAM

Micron

Ultimate Scalability of PCM

Y. C. Chen et al., IEDM 2006

- Device functionality demonstrated on 60 nm² active area
- Reset current <10uA
- Phase change mechanism appears scalable to at least ~5nm

14nm pitch 3.3Tb/in² 20nm pitch 1.6Tb/in² 40nm pitch 0.4Tb/in²

C. Lam, SRC NVM Forum 2004

Micron Technology in Italia

©2011 Micron Technology, Inc. All rights reserved. Products are warranted only to meet Micron's production data sheet specifications. Information, products, and/or specifications are subject to change without notice. All information is provided on an "AS IS" basis without warranties of any kind. Dates are estimates only. Drawings are not to scale. Micron and the Micron logo are trademarks of Micron Technology, Inc. All other trademarks are the property of their respective owners.

Micron Italy Outline

Agrate R&D - R2 Technology Development Center

• Facility 200mm wafers

Micron

- Clean rooms : $\approx 6000 \text{ m}^2$
- People Professionality
 - Researchers
 - Engineers/Technicians
 - Manufacturing Operators
- Research Labs & Activites
 - Electrical labs. and Physical/chemical lab.
 - Material and Device Research lab. of National Research Council
 - Strong links with Universities and key European Research Centers

State of the Art 200 mm Equipment

Advanced equipment for production and development of NVM processes.

- 193nm
 High Numerical Aperture Litho
- Immersion Lithography
- Cu Back-end for high aspect ratio structure
- State of the art Plasma Etching Systems
- High-K Dielectric Atomic Layer Deposition
- Multisputter PVD for Chalcogenides deposition (Phase Change Memory)

Cooperation with Equipment Vendors, national and international labs, to study and integrate new materials

R2 Physics Laboratory

Microscopy Service for R2

Technology development

Defects & Contamination in Si

- Defect reduction in process
- Si contamination control

•Physical Failure Analysis

Yield enhancement

Materials Analysis

- New materials characterization
- Process problem solving

SEM, FIB, TEM for electron microscopy Auger, XPS, TOF-SIMS, XRD for materials analysis

